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A new method for modeling moving, perfectly conducting surfaces is analyzed using a 
numerical technique based on the finite-difference time domain (FD-TD) method. Contrary to 
any other method, the numerical technique used does not require a system transformation 
where the object is at rest but gives a solution to the problem directly in the laboratory frame. 
The central idea of this new technique is the direct finite difference implementation of the 
relativistic boundary conditions at a moving surface. The electromagnetic wave scattering 
properties of a uniformly moving and vibrating rectangular cylinder are analyzed, tirst in one 
dimension and then in two dimensions. Results obtained are in excellent agreement with 
published analytical results. The new approach provides a method to analyze different 
problems of moving perfectly conducting scatterers where alternative analytical means are not 
available. Moreover, the time evolution of the fields are directly observable in the laboratory 
frame. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

The analysis of electromagnetic wave interactions with moving surfaces is of 
importance in studies of moving-target detection, generation of high-power 
microwave energy by moving dense plasmas, and astrophysical phenomena. Such 
problems can generally be divided in two categories: low-velocity effects (moving 
solid targets) and high-velocity effects (relativistic moving plasmas, astrophysics). 
Problems involving low velocities can be simplified by considering only first order 
terms in u/c (c being the velocity of light in free space). Problems involving 
relativistic velocities are more difficult to solve analytically and increasingly are 
being approached via numerical techniques. 

In most cases, analytical approaches for the electrodynamics of moving bodies 
employ a system transformation wherein the object is at rest. Such a transformation 
is well defined for uniformly moving and is known as the Lorentz transformation [ 11. 
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However, for non-uniform motion, a calculation using tensors is required to define 
a system where the object is relatively at rest [2]. Such calculations can become 
very complicated since the characteristics of the problem in the observer frame 
(field polarization, media parameters) are changed in the moving frame. Numerical 
simulation of such problems has followed the same pattern [3]. 

A direct way of approaching a moving-surface problem without using a system 
transformation involves the application of relativistic boundary conditions at the 
moving surface. For a moving material interface, these conditions are given by [4]: 

nx(E,-E,)-(n.v)(B,-B,)=O (1) 

n.(B,-B,)=O. (2) 

n4D2-W=p, (3) 

nx(H,-H,)+(n.v)(D,-D,)=J,. (4) 

where Ei, Di, Hi, and Bi are, respectively, the electric field, electric flux density, 
magnetic field, and magnetic flux density in medium i; ps and J, denote the surface- 
charge and current densities; v is the velocity of the surface boundary (assumed to 
be uniform), and n is the unit vector normal to the surface. 

Note that (l), (2), and the radiation condition provide the complete problem 
physics, assuming that we initially have no surface charge and current density. It is 
also important to note from (l), (4) that a scatterer motion transverse to the 
surface plane (perpendicular to the surface normal) results in boundary conditions 
similar to that of a fixed object, simply because the term n .v is now equal to 0. 
Further, (1) implies that the tangential E-field at the surface of a perfectly 
conducting moving boundary can be finite. However, this does not result in an 
infinite surface current density because the usual expression, J = oE, for current 
density in a material of conductivity, CJ, is no longer valid. Instead, for a uniformly 
moving object, the total induced current is the result of a conduction current plus 
a convection current. Defining b as the ratio u/c, c being the velocity of light in free 
space, the total current is given by 

J=o(E+vxB) 
J&F 

where, for a perfect conductor, E + v x B = 0 from (1); and therefore the surface 
current density J, remains finite. In many references, only small velocities are 
considered and the term a2 is neglected compared to 1. 

In the derivation of the above equations, no assumption is made on the speed u 
relative to the speed of light c, hence the designation relativistic boundary 
conditions. The only assumption made is that the speed u is uniform. However, the 
same relativistic boundary conditions derived for uniform u have been widely 
applied to study accelerating bodies, under certain conditions where the accelera- 
tion is sufficiently low [S]. Here, a new reference frame called the “co-moving 
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frame” or “instantaneous frame” is introduced [2]. The difference is that now the 
velocity u in (1 ), (4) represents the instantaneous velocity instead of the uniform 
velocity. The term “Doppler approximation” [6] is also used to denote analyses 
wherein it is assumed that the instantaneous velocity equals a uniform velocity. It 
is not within the scope of this paper to discuss the details of this theory. Its validity 
in rotating coordinates has been investigated by Shiozawa [5]. The reader can also 
refer to the presentation given in [4, 21. 

In this paper, we discuss a new numerical technique that appears novel in that 
it uses no system transformation. Instead it applies relativistic boundary conditions 
to provide the solution directly in the laboratory frame. It exploits the detailed 
modeling characteristics of the finite-difference time-domain (FD-TD) technique 
and has the potential to permit accurate numerical modeling of moving/vibrating 
rigid body problems of substantially more complexity than existing analytical 
approaches. 

FD-TD is a direct solution of Maxwell’s time-dependent curl equations using 
finite differences. Since its introduction [7-111, the method has been applied to a 
wide range of problems involving electromagnetic wave interactions with stationary 
two- and three-dimensional conducting, dielectric, and anisotropic structures. 
A recent review is given in [12]. Due to the time-domain nature of FD-TD, it is, 
in principle, applicable to direct modeling of wave interaction with time-varying 
surfaces. Our initial work in this area involved wave scattering from a half-space 
media having time-varying conductivity [ 131. We subsequently considered wave 
scattering from relativistically moving perfectly conducting surfaces [ 141, using 
relativistic boundary conditions (1) in a laboratory frame grid. Boundary condition 
(1) relates the E field and H field linearly at the same point in space and time. This 
makes it impossible to implement in the FD-TD code, since there the E field and 
the H field are computed in a leapfrog manner at half-step intervals in time and 
space. It is therefore necessary to derive an equivalent form of (1) wherein 
implementation in the FD-TD code is possible. In [14], this derivation assumed 
that the reflected waves from the moving mirror act like plane waves. Such an 
assumption is exact for normal incidence and/or uniform motion but not for 
oblique incidence on a vibrating mirror. In this paper, we provide an improved 
model of relativistic motion which eliminates the need for such an assumption. The 
validity of this new method will be verified by considering again several cases of 
uniformly moving or vibrating infinite plane mirrors. 

In the next section, we first briefly review the models used in [ 141 to numerically 
implement the required relativistic electromagnetic field boundary conditions. We 
then present an improved technique for achieving the same goal. Section 3 discusses 
validation studies for the uniformly moving and vibrating infinite mirror at normal 
incidence using the improved technique. Section 4 studies the case of a vibrating 
infinite mirror at oblique incidence again using the improved technique. Last, 
Section 5 provides the summary and conclusions. 
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2. RELATIVISTIC BOUNDARY CONDITIONS IN AN FD-TD CODE 

2.1. Brief Description of the Earlier Methods 

2.1.1. Quasi-stationary Method 

This is the most simple approach to model a moving boundary and is widely 
used analytically to obtain a first approximation of the reflected field [2, 63. For 
a uniformly moving mirror, this method gives the proper shift in frequency but 
leaves the amplitude of the reflected field unchanged. For the vibrating mirror case, 
the method predicts the generation of sidebands having amplitudes proportional to 
a zero-order Bessel function, similar to an FM-tone modulation. The modeling of 
the quasi-stationary method in the FD-TD code is relatively simple, with the mirror 
actually moving in the grid. The total tangential E-field at the mirror surfaces 
satisfies the boundary condition of a stationary perfectly conducting surface, i.e., is 
set equal to zero. Similarly, the total tangential H-field at the mirror surface is set 
equal to twice the incident H field. To compute the E and H fields next to the 
mirror surface, we use a contour integral model [ 14, 151. 

2.1.2. Semi-relativistic Method 

This method utilizes an equivalent relativistic boundary condition for the total 
tangential E or H field at the moving boundary surface based on the plane-wave 
assumption discussed earlier. In [ 141, the electric field is selected. This yields an 
equivalent relativistic boundary condition that relates the total tangential E field at 
the moving surface to the incident tangential E field. A contour integral model is 
used to compute the H field adjacent to the moving surface. Reference [14] shows 
that this model provides excellent agreement with published analytical results for 
scattered fields generated by an infinite conducting surface undergoing uniform 
translation or vibration. For the vibration cases considered, the dominant 
propagating modes act together almost like a plane wave, fulfilling the basic 
assumption of the model. 

2.1.3. Fully-relativistic Method 

This approach is similar to the semi-relativistic method except that now the 
equivalent relativistic boundary condition is implemented for both the E and the H 
fields. This approach is actually simpler to implement than the semi-relativistic 
model because it does not require a contour integral. Again, Reference [ 141 shows 
excellent agreement of the model with published analytical results. 

2.2. The Improved Model 

We now propose a new, more robust approach, where the plane-wave 
assumption used in our earlier models is removed. This permits accurate modeling 
of more general relativistic motion by arbitrary conducting bodies where it is not 
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clear a priori that the combined action of the dominant propagating modes 
approximates a plane wave. In this new model, we attempt to directly implement 
condition (1) and (2). In using (1) to calculate the tangential E field at the moving 
surface, there is no restriction on the time-varying velocity. However, a potential 
singularity problem arises when using (1) to calculate the tangential H field at the 
moving surface, since now u shows up in the denominator and may equal zero at 
particular times. We need an alternate relation for the tangential H field that does 
not have the singularity problem at u = 0. Starting from (1 ), it is possible to derive 
such a relation that is suitable for FD-TD implementation at the moving object 
surface. Details of the derivation are given in the Appendix. The result is 

dH (u*-c2) aE 1 dv E .---.-. 
pdt=(d+c*) ay (??+2) dt ’ (6) 

where p is the free space permittivity and E and H represent the total tangential 
electric and magnetic fields, respectively, at the moving boundary surface. At u = 0, 
(6) reduces to a form identical to Maxwell’s curl E equation, clearly with no 
singularities. Equation (6) is suitable for the FD-TD algorithm because it can be 
computed every time step in parallel with H field computation. Note that because 
the E field has a step change from a non-zero value at the moving object surface 
to a zero value inside the perfectly conducting object, the partial space derivative 
in (6) represents a one-sided derivative. 

Our new model thus consists of condition (1) applied to the moving-surface total 
tangential E field, (2) applied to the moving-surface total normal H field, and (6) 
applied to the moving-surface total tangential H field. By finite-differencing (1) we 
obtain 

E;=v”.p.H;, (7) 

where the subscript m denotes a total tangential field value exactly at the object 
surface and the surface H-field value at time n is computed by linearly extrapolating 
the H-field values at times n - l/2 and n - 3/2 as follows: 

H; = 1.5 H”- II2 - 0.5 . H;- 312. (8) 

Condition (2) yields 

fcm,, = 0 for all n. (9) 

Finally, for (6), we obtain 

H” + 112 _ f,,” - 112 

pm dtm 

(v*-c*).E;-E” 1 dv E” 

=(uz dy’ 
--.-. 

(v2+c2) dt m’ 
(10) 

Here, the symbol E with no subscript denotes the non-zero total tangential electric 
held value at the grid point adjacent to the object surface, and dy’ is the 
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FIG. 1. (a) Snapshot of a Moving Mirror in a 1D FD-TD Grid. (b) Vibrating Mirror in a 2D 
FT-TD Grid. 
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corresponding distance from the mirror to this grid point. In all above equations 
(7))( 10) the mirror has a position corresponding to the time step at which the field 
is computed. This position, denoted by y,,(t) in Fig. la, is computed separately in 
the code and is necessary to calculate dy’. Equations (7) and (8) provide us with 
the required field values at the mirror surface. Combining these equations with a 
contour integral model [ 141, we compute the fields adjacent to the surface. From 
the “co-moving” frame theory the velocity u in (1) or in (6) can be assumed to be 
time-varying. 

3. NORMAL INCIDENCE ON A MOVING, INFINITE CONDUCTING SHEET 

3.1. Case of a Uniform Velocity 

In our 1D model, a sinusoidal plane wave of frequency wi (illumination 
frequency) and unit amplitude is normally incident on a uniformly moving, or 
vibrating mirror of frequency w,,. Referring to Fig. la, a positive mirror velocity, v, 
means that the mirror is receding from the incident wave, and a negative mirror 
velocity means that the mirror is advancing toward the incident wave. The scattered 
field from a uniformly moving mirror is given by [2] 

EI(y,t)= -[~]eXpji(~)(mit-~~)+z,k(~)], (11) 

where ye(t) = u(t - to) + r,, is the position of the mirror boundary with respect to a 
reference point, and r,, and t, are some initial values. (For simplicity, we set both 
rO and to equal to 0.) A “double-Doppler” effect is apparent from (11) in that both 
the frequency and amplitude of the scattered field are transformed by the same 
multiplying factor defined as c( = (1 - u/c)/( 1 + u/c). 

Numerical results for double-Doppler shifts obtained with the new relativistic 

TABLE I 

Double-Doppler Shifts for Uniformly Moving Mirror as Obtained by FD-TD and Analysis 

Frequency shift 

Velocity u Analytical FD-TD 

Amplitude shift 

Analytical FD-TD 

- c/3 2 0, 2 w, 
-cJS 1.5 w, 1.5 co, 
- c/l 1.33 Co, 1.33 0, 
+c/2 0.33 w, 0.33 0, 
+cJ3 0.5 W‘ 0.5 w, 
+ cl5 0.66 w, 0.66 co, 
+ c/l 0.75 co, 0.75 w, 

2 6 2.0377 E, 
1.5 E, 1.5125 E, 
1.33 E, 1.332 E, 
0.33 E, 0.329 E, 
0.5 E, 0.499 E, 
0.66 E, 0.664 E, 
0.75 E, 0.748 E, 
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model are summarized in Table I for different approach and recession velocities. In 
all cases, the new model provides highly accurate results in both frequency shift and 
amplitude shift (within 2 % ). 

3.2. Case of a Sinusoidal VelocitJj 

For a vibrating mirror, the scattered field is given by a set of two equations [ 163, 

t= t,+dsin(w,.t,)-4’ (12) 
C c 

qy, t)= - 
1 - p cos(0, to) 

1 + p cos(0,; to) 
cos(w, t, - kd sin(o,. to)), (13) 

where w, is the frequency of the incident wave; y, = d sin(w,, t) describes the dis- 
placement of the mirror vibrating with a frequency, w, and ~=ou(d/c) = v,,,/c. 
Equation (13) can also be written in a Fourier series expansion, 

1 .oo 

o.=O.lw~: kd=l; fi=O.l 

Sideband number 

FIG. 2. Major sidebands of the reflected tield spectrum as obtained both numerically and 
analytically. 
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FIG. 3. Variations of the scattered field amplitude at the illumination frequency for different 
vibrations amplitude (d) of the mirror. 

where 

The scattered field spectrum thus contains the incident frequency oi and an infinity 
of sidebands located at wi + mw, generated by the vibration of the mirror. 

Figure 2 shows the magnitudes of the distinct sideband components of the reflected 
field spectrum for a mirror having a vibration frequency o, = 0.1 oi and I= 0.1. The 
spectrum is obtained by taking a discrete fast Fourier transform (FFT) of the time- 
domain data. To obtain a correct representation of the reflected field spectrum the 
sampling rate was selected such that any sideband component in the spectrum is 
located at exactly a discrete point. The exact values are computed using (14). The 
correspondence between the exact and FD-TD numerical data is so close that the 
stars and open squares appear as closed squares.’ As a further test of the new 
model, Fig. 3 plots the variation of the scattered field amplitude at the illumination 
frequency for a fixed w, = 0.1 oi and variable j. The exact solution is obtained from 
(14) by setting m = 0 which leads to a zero-order Bessel function. Again, excellent 
agreement is demonstrated. Note that the model exactly detects the nulls of the 
Bessel function response. 

’ The dashed line is used to indicate the general shape of the spectrum and not a continuous spectrum. 
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4. OBLIQUE INCIDENCE ON A MOVING, INFINITE CONDUCTING SHEET 

4.1. Problem Description 

Consideration of an infinite planar conducting surface for moving-interface 
problems simplifies the problem because of the abscence of edge effects. Diffraction 
by an isolated, uniformly moving edge has been analytically considered by 
Tsandoulas [ 171 with respect to the far field. Also high and low frequency diffraction 
by a uniformly moving conducting strip has been considered respectively in 
[ 18, 191. But to our knowledge, the analytical solution of an infinite vibrating strip 
or wedge has not yet been reported. 

The model problem considered here is shown in Fig. lb. A thin rectangular 
conducting slab is placed at the center of a two-dimensional FD-TD code. A plane 
wave strikes the surface of the slab at an oblique incident angle defined in the code. 
The goal here is to reconstruct published analytical results for reflection of 
obliquely incident waves by an infinite, vibrating, perfectly conducting planar 
surface, thereby validating the new numerical model. The form of the numerical 
relativistic equations (7) and (8) derived for the 1D problem are still valid for the 
2D problem. It should be noted that the finite-size slab in the FD-TD grid 
introduces edge effects. To reduce or eliminate these effects via causal isolation, we 
obtain the early-time response for a sufficiently long slab. It is observed that as the 
incident angle becomes more grazing, we need to further increase the length of the 
slab for this purpose. 

1 .oo 

I size=l.Z5A; II size=5h; Ill half-plane 
o,=O.lo,: kd=l: fl=O.l 

Sideband number 

FIG. 4. Convergence of Numerical results to analytical results as the size of the cylinder approaches 
that of a half-plane mirror. 
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o,=O.lw,; EJ,=O’; kd=2: @=0.2 
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FIG. 5. Major sidebands of the reflected field spectrum as obtained both numerically and 
analytically. 

4.2. Comparative Results 

The first question considered is the minimum slab length necessary to 
approximately model an infinite mirror. Figure 4 presents an appropriate 
convergence study. Here, numerical data for the scattered sideband spectrum are 
compared to the analytical results as the length of the slab increases. The case selected 
is similar to the 1D case, where kd = 0.1, j3 = 0.1, and 13; = 0”. Clearly, the FD-TD 
results converge to the analytical results as the slab length increases from 50 cells 
(1.25 2) to 200 cells (5 A). The results for 100 cells (2.5 ,I), not shown here, are 
identical to the 200-cell results, which imply that a slab of that size is sufficiently 
long to simulate an infinite mirror in a bounded FD-TD grid for the normal 
incidence case. As will be seen below, the slab length must be increased as the angle 
of incidence increases, to isolate edge effects. 

At oblique incidence, we have much more complicated physics because the 
scattered wave has a spread both in frequency and angle of reflection. The analytical 
solution form, described in [20], solves a set of algebraic equations given by2 

m=z 
c jkA,J,- ,(y,d)= J n(kdcos 0,), (16) 

ml= -3c 

2 Table I of [20] reports values of A, obtained from (16) for 0, = 45”. We need to multiply each A, 
term in this table by (K+mk)/k to get the desired Fourier spectral components. The coefficients 
designated by A, in this table are really normalized amplitudes; in other words they are really kA,,, 
where k = 1. 
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where 

(17) 

and K = o,,/c. 
To validate our method we numerically solved (16) for angles of incidence 

between 0” and 50” for the case kd= 2, and j = 0.2. Figures 5-7 are graphs of the 
reflected sideband spectra corresponding to these angles of incidence. For each 
incident angle we note that the shape of the spectrum is quite different. Yet, the 
numerical model provides the proper sideband structure as given by the analytical 
theory. It is noted that the selected size of the slab at oblique incidence is greater 
than for the normal incidence case to minimize edge effects. It was also noted, 
during our test runs, that the model is correctly sensitive to a small 5” change in 
the angle of incidence. 

Following the analysis in [20] it can be shown that the scattered field magnitude 
at the illumination frequency varies closely as 

J,(2kd cos fli). (18) 

In Fig. 8 we have plotted the above Bessel function versus illumination angle 
together with the results obtained from (16) and the FD-TD model. It is clearly 
seen that (18) constitutes a good approximation to the series solution obtained 

Size= 2.5h: c),=20°; w.=O.lq; @=0.2 

‘.OO . 
, Analytical results 
o FD-TD results 

Sideband number 
0 

Frc. 6. Major propagating sidebands of the reflected Field spectrum as obtained by FD-TD and 
analytically. 
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FIG. 7. Major propagating sidebands of the reflected field spectrum as obtained by FD-TD and 
analytically. 

w,= 0.1 w,; kd=Z; ,9=0.2 
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o Analytical bessel results 
q Numerical results 

Angle of incidence 

FIG. 8. Variations of the scattered field amplitude at the illumination frequency w, for different 
angles of incidence 0,. 
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from (16) over the entire angular range. Also, the correspondence between analytical 
and numerical results is very good up to almost 60”. At larger angles, the corre- 
spondence becomes less exact because of the edge effect. The analytically predicted 
value of 1 at Oj= 90” (grazing) arises because the vibration of the mirror is 
insensitive to the incident wave and acts like a stationary surface. 

5. SUMMARY AND CONCLUSION 

We have presented a new method to incorporate relativistic boundary conditions 
at the surface of a moving conductor in a 1D and 2D numerical wave propagation 
codes. The model proposed is an exact one which eliminates the plane-wave 
assumption necessary in our earlier models. Two types of relativistic mirror motion 
have been considered: translation and vibration. Numerical results obtained were 
compared against the exact analytical solution, and uniformly good agreement was 
demonstrated. The numerical technique reported is unique in that it requires no 
system transformation, contrary to other methods where the problem is first solved 
in the moving frame and then transformed back to the rest frame. The method can 
be directly adapted to model other types of relativistic moving boundary problems 
involving two- and three-dimensional perfectly-conducting bodies of finite size and 
arbitrary shape. Extension to penetrable material bodies should be feasible as well. 
The new method promises to be a powerful tool to model electromagnetic wave 
interactions with complex moving obstacles where the analysis would be virtually 
intractable. 

APPENDIX 

Following is the derivation of Eq. (6). We shall assume a TM wave of 
components (E,, H,, H,.). The relativistic boundary condition (1) is now written as 

E, = v . B,. (19) 

Assuming v to be time dependent, by total differentiating both sides we obtain 

From Maxwell’s equation we have 

aE7 l3B A= 1 
a, at 

(20) 

(21) 

which, together with 
dB.r 8B.x dr=-.-+“.~, 

ay (22) 
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lead, after simple manipulations, to 

dH, v2- c2 8E; 1 dv .-..-.-.EE;. 
7F=v2+c2 ay v2+c2 dt (A.1) 

The term associated with d&./ax is removed because the normal B component to 
the moving surface is equal to zero, from (2). Equation (A.l) corresponds to (6). 
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